Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Physiol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686538

ABSTRACT

Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.

2.
Nanotheranostics ; 7(4): 345-352, 2023.
Article in English | MEDLINE | ID: mdl-37151803

ABSTRACT

Extracellular vesicles (EVs), such as exosomes, are nanovesicles that have received significant attention due to their ability to contain various molecular cargos. EVs found in biological fluids have been demonstrated to have therapeutic potential, including as biomarkers. Despite being extensively studied, a significant downfall in EV research is the lack of standardised protocol for its isolation from human biological fluids, where EVs usually exist at low densities. In this study, we tested two well-established EV isolation protocols, precipitation, and size exclusion chromatography (SEC), to determine their efficiency in isolating EVs from the pericardial fluid. Precipitation alone resulted in high yields of low-purity exosomes as tested by DLS analysis, transmission electron microscopy, immunogold labelling and western blotting for the exosomal surface proteins. While EVs isolated by SEC were pure, the concentration was low. Interestingly, the combination of precipitation followed by SEC resulted in high EV yields with good purity. Our results suggest that the combination method can be adapted to isolate EVs from body fluids which have low densities of EV.


Subject(s)
Exosomes , Extracellular Vesicles , Humans , Exosomes/metabolism , Pericardial Fluid , Extracellular Vesicles/metabolism , Chromatography, Gel , Biomarkers/metabolism
3.
Mol Ther Nucleic Acids ; 29: 330-342, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35950211

ABSTRACT

Non-ischemic diabetic heart disease (NiDHD) is characterized by diastolic dysfunction and decreased or preserved systolic function, eventually resulting in heart failure. Accelerated apoptotic cell death because of alteration of molecular signaling pathways due to dysregulation in microRNAs (miRNAs) plays a significant role in the development of NiDHD. Here, we aimed to determine the pathological role of cardiomyocyte-enriched pro-apoptotic miR-320 in the development of NiDHD. We identified a marked upregulation of miR-320 that was associated with downregulation of its target protein insulin growth factor-1 (IGF-1) in human right atrial appendage tissue in the late stages of cardiomyopathy in type 2 diabetic db/db mice and high-glucose-cultured human ventricular cardiomyocytes (AC-16 cells). In vitro knockdown of miR-320 in high-glucose-exposed AC-16 cells using locked nucleic acid (LNA) anti-miR-320 markedly reduced high-glucose-induced apoptosis by restoring IGF-1 and Bcl-2. Finally, in vivo knockdown of miR-320 in 24-week-old type 2 diabetic db/db mice reduced cardiomyocyte apoptosis and interstitial fibrosis while restoring vascular density. This resulted in partial recovery of the impaired diastolic and systolic function. Our study provides evidence that miR-320 is a late-responding miRNA that aggravates apoptosis and cardiac dysfunction in the diabetic heart, and that therapeutic knockdown of miR-320 is beneficial in partially restoring the deteriorated cardiac function.

4.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628402

ABSTRACT

Cardiac progenitor cells (CPCs) and adipocyte stem cells (ASCs) are widely tested for their efficacy in repairing the diseased heart with varying results. However, no study has directly compared the functional efficacy of CPCs and ASCs collected from the same patient. CPCs and ASCs were isolated from the right atrial appendage and epicardial adipose tissue of the same patients, using explant culture. The flow cytometry analysis confirmed that both the cell types express common mesenchymal stem cells markers CD90 and CD105. ASCs, in addition, expressed CD29 and CD73. The wound-healing assay demonstrated that CPCs migrate faster to cover the wound area. Both cell types were resistant to hypoxia-induced cell death when exposed to hypoxia and serum deprivation; however, the ASCs showed increased proliferation. Conditioned medium (CM) collected after culturing serum-deprived CPCs and ASCs showed differential secretion patterns, with ASC CM showing an increased IGF-1 level, while CPC CM showed an increased FGF level. Only CPC CM reduced hypoxia-induced apoptosis in AC-16 human ventricular cardiomyocytes, while vascular network formation by endothelial cells was comparable between CPC and ASC CM. In conclusion, ASCs and CPCs exhibit differential characteristics within the same patient, and in vitro studies showed that CPCs have marginally superior functional efficacy.


Subject(s)
Endothelial Cells , Stem Cells , Adipocytes , Adipose Tissue/metabolism , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Humans , Hypoxia/metabolism , Stem Cells/metabolism
5.
Hypertension ; 79(7): 1385-1394, 2022 07.
Article in English | MEDLINE | ID: mdl-35510563

ABSTRACT

BACKGROUND: Elevated expression and increased activity of vascular epithelial sodium channel (ENaC) can result in vascular dysfunction in small animal models. However, there is limited or no knowledge on expression and function of ENaC channels in human vasculature. Hence, this study explored the expression and function of ENaC in human arteries and their association with hypertension. METHODS: Human internal mammary artery (IMA) and aorta were obtained from cardiovascular patients undergoing coronary artery bypass graft surgery. Expression of the ENaC subunit was analyzed by polymerase chain reaction, Western blot, and immunohistochemistry. ENaC function was observed by patch-clamp electrophysiology in endothelial cells isolated from IMA. Levels of ENaC subunit expression levels were compared between arteries from normotensive, uncontrolled hypertensive, and controlled hypertensive patients. RESULTS: For the first time, expression of α, ß, γ, and δ was detected at mRNA and protein levels in human IMA and aorta. Single-channel patch-clamp recordings identified both αßγ- and δßγ-like channel conductance in primary endothelial cells isolated and cultured from IMA. Reduced expression of the δ subunit was observed in controlled hypertensive IMA, whereas reduced expression of γ-ENaC was observed in controlled hypertensive aorta. CONCLUSIONS: These data suggest that functional ENaC channels are expressed in human arteries and their expression levels are associated with hypertension.


Subject(s)
Epithelial Sodium Channels , Hypertension , Animals , Arteries/metabolism , Endothelial Cells/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Humans , Hypertension/genetics , Xenopus laevis/metabolism
6.
Int J Cardiol ; 341: 70-73, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34461161

ABSTRACT

BACKGROUND: The heart has an intrinsic ability to regenerate, orchestrated by progenitor or stem cells. However, the relative complexity of non-resident cardiac progenitor cell (CPC) therapy makes modulation of resident CPCs a more attractive treatment target. Thiamine analogues improve resident CPC function in pre-clinical models. In this double blinded randomised controlled trial (identifier: ACTRN12614000755639), we examined whether thiamine would improve CPC function in humans. METHODS AND RESULTS: High dose oral thiamine (one gram twice daily) or matching placebo was administered 3-5 days prior to coronary artery bypass surgery (CABG). Right atrial appendages were collected at the time of CABG, and CPCs isolated. There was no difference in the primary outcome (proliferation ability of CPCs) between treatment groups. Older age was not associated with decreased proliferation ability. In exploratory analyses, isolated CPCs in the thiamine group showed an increase in the proportion of CD34-/CD105+ (endoglin) cells, but no difference in CD34-/CD90+ or CD34+ cells. Thiamine increased maximum force developed by isolated trabeculae, with no difference in relaxation time or beta-adrenergic responsiveness. CONCLUSION: Thiamine does not improve proliferation ability of CPC in patients undergoing CABG, but increases the proportion of CD34-/CD105+ cells. Having not met its primary endpoint, this study provides the impetus to re-examine CPC biology prior to any clinical outcome-based trial examining potential beneficial cardiovascular effects of thiamine.


Subject(s)
Stem Cells , Thiamine , Aged , Endoglin , Heart Atria , Humans , Signal Transduction
7.
Am J Physiol Heart Circ Physiol ; 321(1): H162-H174, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34085842

ABSTRACT

Long-chain acylcarnitines (LCACs) are known to directly alter cardiac contractility and electrophysiology. However, the acute effect of LCACs on human cardiac function is unknown. We aimed to determine the effect of LCAC 18:1, which has been associated with cardiovascular disease, on the contractility and arrhythmia susceptibility of human atrial myocardium. Additionally, we aimed to assess how LCAC 18:1 alters Ca2+ influx and spontaneous Ca2+ release in vitro. Human right atrial trabeculae (n = 32) stimulated at 1 Hz were treated with LCAC 18:1 at a range of concentrations (1-25 µM) for a 45-min period. Exposure to the LCAC induced a dose-dependent positive inotropic effect on myocardial contractility (maximal 1.5-fold increase vs. control). At the 25 µM dose (n = 8), this was paralleled by an enhanced propensity for spontaneous contractions (50% increase). Furthermore, all LCAC 18:1 effects on myocardial function were reversed following LCAC 18:1 washout. In fluo-4-AM-loaded HEK293 cells, LCAC 18:1 dose dependently increased cytosolic Ca2+ influx relative to vehicle controls and the short-chain acylcarnitine C3. In HEK293 cells expressing ryanodine receptor (RyR2), this increased Ca2+ influx was linked to an increased propensity for RyR2-mediated spontaneous Ca2+ release events. Our study is the first to show that LCAC 18:1 directly and acutely alters human myocardial function and in vitro Ca2+ handling. The metabolite promotes proarrhythmic muscle contractions and increases contractility. The exploratory findings in vitro suggest that LCAC 18:1 increases proarrhythmic RyR2-mediated spontaneous Ca2+ release propensity. The direct effects of metabolites on human myocardial function are essential to understand cardiometabolic dysfunction.NEW & NOTEWORTHY For the first time, the fatty acid metabolite, long-chain acylcarnitine 18:1, is shown to acutely increase the arrhythmia susceptibility and contractility of human atrial myocardium. In vitro, this was linked to an influx of Ca2+ and an enhanced propensity for spontaneous RyR2-mediated Ca2+ release.


Subject(s)
Calcium Signaling/drug effects , Carnitine/analogs & derivatives , Heart Atria/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Aged , Aged, 80 and over , Carnitine/pharmacology , Female , Heart Atria/metabolism , Humans , Male , Middle Aged , Myocytes, Cardiac/metabolism
8.
Front Cell Dev Biol ; 9: 633704, 2021.
Article in English | MEDLINE | ID: mdl-33718369

ABSTRACT

The release of Ca2+ by ryanodine receptor (RyR2) channels is critical for cardiac function. However, abnormal RyR2 activity has been linked to the development of arrhythmias, including increased spontaneous Ca2+ release in human atrial fibrillation (AF). Clustering properties of RyR2 have been suggested to alter the activity of the channel, with remodeling of RyR2 clusters identified in pre-clinical models of AF and heart failure. Whether such remodeling occurs in human cardiac disease remains unclear. This study aimed to investigate the nanoscale organization of RyR2 clusters in AF patients - the first known study to examine this potential remodeling in diseased human cardiomyocytes. Right atrial appendage from cardiac surgery patients with paroxysmal or persistent AF, or without AF (non-AF) were examined using super-resolution (dSTORM) imaging. Significant atrial dilation and cardiomyocyte hypertrophy was observed in persistent AF patients compared to non-AF, with these two parameters significantly correlated. Interestingly, the clustering properties of RyR2 were remarkably unaltered in the AF patients. No significant differences were identified in cluster size (mean ∼18 RyR2 channels), density or channel packing within clusters between patient groups. The spatial organization of clusters throughout the cardiomyocyte was also unchanged across the groups. RyR2 clustering properties did not significantly correlate with patient characteristics. In this first study to examine nanoscale RyR2 organization in human cardiac disease, these findings indicate that RyR2 cluster remodeling is not an underlying mechanism contributing to altered channel function and subsequent arrhythmogenesis in human AF.

9.
Diabetologia ; 64(6): 1422-1435, 2021 06.
Article in English | MEDLINE | ID: mdl-33655378

ABSTRACT

AIMS/HYPOTHESIS: Diabetes mellitus causes a progressive loss of functional efficacy in stem cells, including cardiac progenitor cells (CPCs). The underlying molecular mechanism is still not known. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate genes at the post-transcriptional level. We aimed to determine if diabetes mellitus induces dysregulation of miRNAs in CPCs and to test if in vitro therapeutic modulation of miRNAs would improve the functions of diabetic CPCs. METHODS: CPCs were isolated from a mouse model of type 2 diabetes (db/db), non-diabetic mice and human right atrial appendage heart tissue. Total RNA isolated from mouse CPCs was miRNA profiled using Nanostring analysis. Bioinformatic analysis was employed to predict the functional effects of altered miRNAs. MS analysis was applied to determine the targets, which were confirmed by western blot analysis. Finally, to assess the beneficial effects of therapeutic modulation of miRNAs in vitro and in vivo, prosurvival miR-30c-5p was overexpressed in mouse and human diabetic CPCs, and the functional consequences were determined by measuring the level of apoptotic cell death, cardiac function and mitochondrial membrane potential (MMP). RESULTS: Among 599 miRNAs analysed in mouse CPCs via Nanostring analysis, 16 miRNAs showed significant dysregulation in the diabetic CPCs. Using bioinformatics tools and quantitative real-time PCR (qPCR) validation, four altered miRNAs (miR-30c-5p, miR-329-3p, miR-376c-3p and miR-495-3p) were identified to play an important role in cell proliferation and survival. Diabetes mellitus significantly downregulated miR-30c-5p, while it upregulated miR-329-3p, miR-376c-3p and miR-495-3p. MS analysis revealed proapoptotic voltage-dependent anion-selective channel 1 (VDAC1) as a direct target for miR-30c-5p, and cell cycle regulator, cyclin-dependent protein kinase 6 (CDK6), as the direct target for miR-329-3p, miR-376c-3p and miR-495-3p. Western blot analyses showed a marked increase in VDAC1 expression, while CDK6 expression was downregulated in diabetic CPCs. Finally, in vitro and in vivo overexpression of miR-30c-5p markedly reduced the apoptotic cell death and preserved MMP in diabetic CPCs via inhibition of VDAC1. CONCLUSIONS/INTERPRETATION: Our results demonstrate that diabetes mellitus induces a marked dysregulation of miRNAs associated with stem cell survival, proliferation and differentiation, and that therapeutic overexpression of prosurvival miR-30c-5p reduced diabetes-induced cell death and loss of MMP in CPCs via the newly identified target for miR-30c-5p, VDAC1.


Subject(s)
Cell Proliferation/physiology , Cell Survival/physiology , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Stem Cells/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Heart Atria/metabolism , Heart Atria/pathology , Humans , Mice , MicroRNAs/genetics , Stem Cells/pathology
10.
Cardiovasc Diabetol ; 20(1): 50, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33618724

ABSTRACT

BACKGROUND: Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (M2AChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart. METHODS: Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and M2AChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways. RESULTS: Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1α signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A. CONCLUSION: We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.


Subject(s)
Acetylcholine/metabolism , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/prevention & control , Glucose/metabolism , Heart Ventricles/metabolism , Acetylcholinesterase/metabolism , Aged , Animals , Case-Control Studies , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Female , GPI-Linked Proteins/metabolism , Glucose Transporter Type 4/metabolism , Humans , Male , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Muscarinic M2/metabolism , Symporters/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism
11.
Nutr Diabetes ; 11(1): 8, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558456

ABSTRACT

Diabetes is associated with cardiac metabolic disturbances and increased heart failure risk. Plasma fructose levels are elevated in diabetic patients. A direct role for fructose involvement in diabetic heart pathology has not been investigated. The goals of this study were to clinically evaluate links between myocardial fructose and sorbitol (a polyol pathway fructose precursor) levels with evidence of cardiac dysfunction, and to experimentally assess the cardiomyocyte mechanisms involved in mediating the metabolic effects of elevated fructose. Fructose and sorbitol levels were increased in right atrial appendage tissues of type 2 diabetic patients (2.8- and 1.5-fold increase respectively). Elevated cardiac fructose levels were confirmed in type 2 diabetic rats. Diastolic dysfunction (increased E/e', echocardiography) was significantly correlated with cardiac sorbitol levels. Elevated myocardial mRNA expression of the fructose-specific transporter, Glut5 (43% increase), and the key fructose-metabolizing enzyme, Fructokinase-A (50% increase) was observed in type 2 diabetic rats (Zucker diabetic fatty rat). In neonatal rat ventricular myocytes, fructose increased glycolytic capacity and cytosolic lipid inclusions (28% increase in lipid droplets/cell). This study provides the first evidence that elevated myocardial fructose and sorbitol are associated with diastolic dysfunction in diabetic patients. Experimental evidence suggests that fructose promotes the formation of cardiomyocyte cytosolic lipid inclusions, and may contribute to lipotoxicity in the diabetic heart.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Fructose/analysis , Lipid Metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Sorbitol/analysis , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Fructokinases , Fructose/metabolism , Glucose/metabolism , Humans , Lipid Droplets/metabolism , Male , Myocardium/chemistry , Rats , Rats, Zucker , Sorbitol/metabolism , Ventricular Dysfunction, Left/pathology
12.
J Am Coll Cardiol ; 77(4): 405-419, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33509397

ABSTRACT

BACKGROUND: Whereas heart failure with reduced ejection fraction (HFrEF) is associated with ventricular dilation and markedly reduced systolic function, heart failure with preserved ejection fraction (HFpEF) patients exhibit concentric hypertrophy and diastolic dysfunction. Impaired cardiomyocyte Ca2+ homeostasis in HFrEF has been linked to disruption of membrane invaginations called t-tubules, but it is unknown if such changes occur in HFpEF. OBJECTIVES: This study examined whether distinct cardiomyocyte phenotypes underlie the heart failure entities of HFrEF and HFpEF. METHODS: T-tubule structure was investigated in left ventricular biopsies obtained from HFrEF and HFpEF patients, whereas cardiomyocyte Ca2+ homeostasis was studied in rat models of these conditions. RESULTS: HFpEF patients exhibited increased t-tubule density in comparison with control subjects. Super-resolution imaging revealed that higher t-tubule density resulted from both tubule dilation and proliferation. In contrast, t-tubule density was reduced in patients with HFrEF. Augmented collagen deposition within t-tubules was observed in HFrEF but not HFpEF hearts. A causative link between mechanical stress and t-tubule disruption was supported by markedly elevated ventricular wall stress in HFrEF patients. In HFrEF rats, t-tubule loss was linked to impaired systolic Ca2+ homeostasis, although diastolic Ca2+ removal was also reduced. In contrast, Ca2+ transient magnitude and release kinetics were largely maintained in HFpEF rats. However, diastolic Ca2+ impairments, including reduced sarco/endoplasmic reticulum Ca2+-ATPase activity, were specifically observed in diabetic HFpEF but not in ischemic or hypertensive models. CONCLUSIONS: Although t-tubule disruption and impaired cardiomyocyte Ca2+ release are hallmarks of HFrEF, such changes are not prominent in HFpEF. Impaired diastolic Ca2+ homeostasis occurs in both conditions, but in HFpEF, this mechanism for diastolic dysfunction is etiology-dependent.


Subject(s)
Calcium/metabolism , Heart Failure, Diastolic/etiology , Myocytes, Cardiac/metabolism , Aged , Aged, 80 and over , Echocardiography , Female , Heart Failure, Diastolic/diagnostic imaging , Heart Failure, Diastolic/metabolism , Heart Failure, Diastolic/pathology , Homeostasis , Humans , Male , Middle Aged , Myocytes, Cardiac/pathology
13.
Cell Transplant ; 29: 963689720972328, 2020.
Article in English | MEDLINE | ID: mdl-33153286

ABSTRACT

Cardiovascular diseases, such as ischemic heart disease, remain the most common cause of death worldwide. Regenerative medicine with stem cell therapy is a promising tool for cardiac repair. Combination of different cell types has been shown to improve the therapeutic potential, which is thought to be due to synergistic or complimentary reparative effects. We investigated if the combination of cardiac progenitor cells (CPCs) of right atrial appendage (RAA) and left ventricle (LV) that are isolated from the same patient exert synergistic or complimentary paracrine effects for apoptotic cell death and angiogenesis in an in vitro model. Flow cytometry analysis showed that both RAA and LV CPCs expressed the mesenchymal cell markers CD90 and CD105, and were predominantly negative for the hematopoietic cell marker, CD34. Analysis of conditioned media (CM) collected from the CPCs cultured either alone or in combination in serum-deprived hypoxic conditions to simulate ischemia showed marked increase in the level of pro-survival hepatocyte growth factor and pro-angiogenic vascular endothelial growth factor-A in the combined RAA and LV CPC group. Next, to determine the therapeutic potential of CM, AC16 human ventricular cardiomyocytes and human umbilical vein endothelial cells (HUVECs) were treated with CM. Results showed a significant reduction in hypoxia-induced apoptosis of human cardiomyocytes treated with CM collected from combined RAA and LV CPC group. Similarly, matrigel assay showed a significantly increased tube length formed by HUVECs when treated with CM from combined RAA and LV CPC group. Our study provided evidence that the combination of RAA CPCs and LV CPCs may have superior therapeutic effects due to synergistic paracrine effects for cardiac repair. Therefore, in vivo studies are warranted to determine if a combination of different stem cell types have greater therapeutic potential than single-cell therapies.


Subject(s)
Heart Atria/cytology , Heart Ventricles/cytology , Myocytes, Cardiac/cytology , Angiogenesis Inducing Agents , Apoptosis/physiology , Cell Differentiation/physiology , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Stem Cell Transplantation , Stem Cells/cytology , Stem Cells/physiology
14.
Am J Physiol Endocrinol Metab ; 319(3): E540-E547, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32715745

ABSTRACT

The adipocytokine resistin is released from epicardial adipose tissue (EAT). Plasma resistin and EAT deposition are independently associated with atrial fibrillation. The EAT secretome enhances arrhythmia susceptibility and inotropy of human myocardium. Therefore, we aimed to determine the effect of resistin on the function of human myocardium and how resistin contributes to the proarrhythmic effect of EAT. EAT biopsies were obtained from 25 cardiac surgery patients. Resistin levels were measured by ELISA in 24-h EAT culture media (n = 8). The secretome resistin concentrations increased over the culture period to a maximal level of 5.9 ± 1.2 ng/mL. Coculture with ß-adrenergic agonists isoproterenol (n = 4) and BRL37344 (n = 13) had no effect on EAT resistin release. Addition of resistin (7, 12, 20 ng/mL) did not significantly increase the spontaneous contraction propensity of human atrial trabeculae (n = 10) when given alone or in combination with isoproterenol. Resistin dose-dependently increased trabecula-developed force (maximal 2.9-fold increase, P < 0.0001), as well as the maximal rates of contraction (2.6-fold increase, P = 0.002) and relaxation (1.8-fold increase, P = 0.007). Additionally, the postrest potentiation capacity of human trabeculae was reduced at all resistin doses, suggesting that the inotropic effect induced by resistin might be due to altered sarcoplasmic reticulum Ca2+ handling. EAT resistin release is not modulated by common arrhythmia triggers. Furthermore, exogenous resistin does not promote arrhythmic behavior in human atrial trabeculae. Resistin does, however, induce an acute dose-dependent positive inotropic and lusitropic effect.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Heart Atria/drug effects , Myocardial Contraction/drug effects , Resistin/physiology , Adipose Tissue/metabolism , Aged , Aged, 80 and over , Calcium/metabolism , Cardiotonic Agents/pharmacology , Dose-Response Relationship, Drug , Female , Humans , Isoproterenol/pharmacology , Male , Middle Aged , Pericardium/metabolism , Resistin/blood , Sarcoplasmic Reticulum/metabolism , Trabecular Meshwork/metabolism
15.
Apoptosis ; 25(5-6): 388-399, 2020 06.
Article in English | MEDLINE | ID: mdl-32418060

ABSTRACT

Type 2 diabetes has a strong association with the development of cardiovascular disease, which is grouped as diabetic heart disease (DHD). DHD is associated with the progressive loss of cardiovascular cells through the alteration of molecular signalling pathways associated with cell death. In this study, we sought to determine whether diabetes induces dysregulation of miR-532 and if this is associated with accentuated apoptosis. RT-PCR analysis showed a significant increase in miR-532 expression in the right atrial appendage tissue of type 2 diabetic patients undergoing coronary artery bypass graft surgery. This was associated with marked downregulation of its anti-apoptotic target protein apoptosis repressor with caspase recruitment domain (ARC) and increased TUNEL positive cardiomyocytes. Further analysis showed a positive correlation between apoptosis and miR-532 levels. Time-course experiments in a mouse model of type 2 diabetes showed that diabetes-induced activation of miR-532 occurs in the later stage of the disease. Importantly, the upregulation of miR-532 preceded the activation of pro-apoptotic caspase-3/7 activity. Finally, inhibition of miR-532 activity in high glucose cultured human cardiomyocytes prevented the downregulation of ARC and attenuated apoptotic cell death. Diabetes induced activation of miR-532 plays a critical role in accelerating cardiomyocytes apoptosis. Therefore, miR-532 may serve as a promising therapeutic agent to overcome the diabetes-induced loss of cardiomyocytes.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , MicroRNAs/genetics , Muscle Proteins/genetics , Aged , Aged, 80 and over , Animals , Antagomirs/genetics , Antagomirs/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Caspase 7/genetics , Caspase 7/metabolism , Cell Line , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Regulation , Glucose/pharmacology , Glycated Hemoglobin/genetics , Glycated Hemoglobin/metabolism , Heart Atria/drug effects , Heart Atria/metabolism , Heart Atria/pathology , Humans , Male , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Middle Aged , Muscle Proteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Triglycerides/blood
16.
Physiol Rep ; 8(5): e14394, 2020 03.
Article in English | MEDLINE | ID: mdl-32170823

ABSTRACT

PURPOSE: Increasing cohorts of patients present with diabetic cardiomyopathy, and with no targeted options, treatment often rely on generic pharmaceuticals such as ß-blockers. ß-blocker efficacy is heterogenous, with second generation ß-blocker metoprolol selectively inhibiting ß1 -AR, while third generation ß-blocker carvedilol has α1 -AR inhibition, antioxidant, and anti-apoptotic actions alongside nonselective ß-AR inhibition. These additional properties have led to the hypothesis that carvedilol may improve cardiac contractility in the diabetic heart to a greater extent than metoprolol. The present study aimed to compare the efficacy of metoprolol and carvedilol on myocardial function in animal models and cardiac tissue from patients with type 2 diabetes and preserved ejection fraction. METHODS: Echocardiographic examination of cardiac function and assessment of myocardial function in isolated trabeculae was carried out in patients with and without diabetes undergoing coronary artery bypass grafting (CABG) who were prescribed metoprolol or carvedilol. Equivalent measures were undertaken in Zucker Diabetic Fatty (ZDF) rats following 4 weeks treatment with metoprolol or carvedilol. RESULTS: Patients receiving carvedilol compared to metoprolol had no difference in cardiac function, and no difference was apparent in myocardial function between ß-blockers. Both ß-blockers similarly improved myocardial function in diabetic ZDF rats treated for 4 weeks, without significantly affecting in vivo cardiac function. CONCLUSIONS: Metoprolol and carvedilol were found to have no effect on cardiac function in type 2 diabetes with preserved ejection fraction, and were similarly effective in preventing myocardial dysfunction in ZDF rats.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/therapeutic use , Carvedilol/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Heart/drug effects , Metoprolol/therapeutic use , Aged , Animals , Carvedilol/administration & dosage , Coronary Artery Bypass/methods , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Female , Heart/physiopathology , Humans , Male , Metoprolol/administration & dosage , Middle Aged , Rats, Zucker , Treatment Outcome
17.
Am J Physiol Endocrinol Metab ; 318(2): E164-E172, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31821041

ABSTRACT

Epicardial adipose tissue (EAT) deposition has a strong clinical association with atrial arrhythmias; however, whether a direct functional interaction exists between EAT and the myocardium to induce atrial arrhythmias is unknown. Therefore, we aimed to determine whether human EAT can be an acute trigger for arrhythmias in human atrial myocardium. Human trabeculae were obtained from right atrial appendages of patients who have had cardiac surgery (n = 89). The propensity of spontaneous contractions (SCs) in the trabeculae (proxy for arrhythmias) was determined under physiological conditions and during known triggers of SCs (high Ca2+, ß-adrenergic stimulation). To determine whether EAT could trigger SCs, trabeculae were exposed to superfusate of fresh human EAT, and medium of 24 h-cultured human EAT treated with ß1/2 (isoproterenol) or ß3 (BRL37344) adrenergic agonists. Without exposure to EAT, high Ca2+ and ß1/2-adrenergic stimulation acutely triggered SCs in, respectively, 47% and 55% of the trabeculae that previously were not spontaneously active. Acute ß3-adrenergic stimulation did not trigger SCs. Exposure of trabeculae to either superfusate of fresh human EAT or untreated medium of 24 h-cultured human EAT did not induce SCs; however, specific ß3-adrenergic stimulation of EAT did trigger SCs in the trabeculae, either when applied to fresh (31%) or cultured (50%) EAT. Additionally, fresh EAT increased trabecular contraction and relaxation, whereas media of cultured EAT only increased function when treated with the ß3-adrenergic agonist. An acute functional interaction between human EAT and human atrial myocardium exists that increases the propensity for atrial arrhythmias, which depends on ß3-adrenergic rather than ß1/2-adrenergic stimulation of EAT.


Subject(s)
Adipose Tissue/physiopathology , Arrhythmias, Cardiac/physiopathology , Heart Atria/physiopathology , Heart/physiopathology , Pericardium/physiopathology , Adrenergic beta-3 Receptor Agonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Aged , Ethanolamines/pharmacology , Female , Humans , Isoproterenol/pharmacology , Male , Myocardial Contraction , Myocardium/metabolism
18.
Adipocyte ; 8(1): 412-420, 2019 12.
Article in English | MEDLINE | ID: mdl-31829077

ABSTRACT

Macroscopic deposition of epicardial adipose tissue (EAT) has been strongly associated with numerous indices of obesity and cardiovascular disease risk. In contrast, the morphology of EAT adipocytes has rarely been investigated. We aimed to determine whether obesity-driven adipocyte hypertrophy, which is characteristic of other visceral fat depots, is found within EAT adipocytes. EAT samples were collected from cardiac surgery patients (n = 49), stained with haematoxylin & eosin, and analysed for mean adipocyte size and non-adipocyte area. EAT thickness was measured using echocardiography. A significant positive relationship was found between EAT thickness and body mass index (BMI). When stratified into standardized BMI categories, EAT thickness was 58.7% greater (p = 0.003) in patients from the obese (7.3 ± 1.8 mm) compared to normal (4.6 ± 0.9 mm) category. BMI as a continuous variable significantly correlated with EAT thickness (r = 0.56, p < 0.0001). Conversely, no correlation was observed between adipocyte size and either BMI or EAT thickness. No difference in the non-adipocyte area was found between BMI groups. Our results suggest that the increased macroscopic EAT deposition associated with obesity is not caused by adipocyte hypertrophy. Rather, alternative remodelling via adipocyte proliferation might be responsible for the observed EAT expansion.


Subject(s)
Adipose Tissue/pathology , Coronary Artery Disease/surgery , Obesity/diagnostic imaging , Pericardium/diagnostic imaging , Adipose Tissue/diagnostic imaging , Aged , Aged, 80 and over , Body Mass Index , Cell Size , Coronary Artery Disease/diagnostic imaging , Echocardiography , Female , Humans , Male , Middle Aged , Obesity/pathology , Pericardium/pathology
19.
Cardiovasc Diabetol ; 18(1): 13, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696455

ABSTRACT

BACKGROUND: The diabetic heart undergoes remodelling contributing to an increased incidence of heart failure in individuals with diabetes at a later stage. The molecular regulators that drive this process in the diabetic heart are still unknown. METHODS: Real-time (RT) PCR analysis was performed to determine the expression of cardiac specific microRNA-208a in right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery. To determine the time-dependent changes, cardiac tissue were collected from type 2 diabetic mice at different age groups. A western blotting analysis was conducted to determine the expression of contractile proteins α- and ß-myosin heavy chain (MHC) and thyroid hormone receptor-α (TR-α), the negative regulator of ß-MHC. To determine the beneficial effects of therapeutic modulation of miR-208a, high glucose treated adult mouse HL-1 cardiomyocytes were transfected with anti-miR-208a. RESULTS: RT-PCR analysis showed marked upregulation of miR-208a from early stages of diabetes in type 2 diabetic mouse heart, which was associated with a marked increase in the expression of pro-hypertrophic ß-MHC and downregulation of TR-α. Interestingly, upregulation of miR-208a preceded the switch of α-/ß-MHC isoforms and the development of diastolic and systolic dysfunction. We also observed significant upregulation of miR-208a and modulation of miR-208a associated proteins in the type 2 human diabetic heart. Therapeutic inhibition of miR-208a activity in high glucose treated HL-1 cardiomyocytes prevented the activation of ß-MHC and hence the hypertrophic response. CONCLUSION: Our results provide the first evidence that early modulation of miR-208a in the diabetic heart induces alterations in the downstream signaling pathway leading to cardiac remodelling and that therapeutic inhibition of miR-208a may be beneficial in preventing diabetes-induced adverse remodelling of the heart.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Heart Ventricles/metabolism , Hypertrophy, Left Ventricular/metabolism , MicroRNAs/metabolism , Ventricular Function, Left , Ventricular Remodeling , Aged , Aged, 80 and over , Animals , Cell Line , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Female , Gene Expression Regulation , Heart Ventricles/physiopathology , Humans , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Middle Aged , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Signal Transduction , Time Factors , Ventricular Myosins/genetics , Ventricular Myosins/metabolism
20.
Cell Death Differ ; 25(7): 1336-1349, 2018 07.
Article in English | MEDLINE | ID: mdl-29302057

ABSTRACT

Increased apoptosis and premature cellular ageing of the diabetic heart underpin the development of diabetic heart disease. The molecular mechanisms underlying these pathologies are still unclear. Here we determined the role of pro-senescence microRNA (miR)-34a in accelerating the ageing of the diabetic heart. RT-PCR analysis showed a significant increase in the level of circulating miR-34a from early stages in asymptomatic type-2 diabetic individuals compared to non-diabetic controls. We also observed significant upregulation of miR-34a in the type-2 human diabetic heart suggesting circulating miR-34a may be cardiac in origin. Moreover, western blot analysis identified marked downregulation of the pro-survival protein sirtuin 1 (SIRT1), a direct target of miR-34a. Analysis of cultured human adult cardiomyocytes exposed to high glucose and cardiac progenitor cells (CPCs) isolated from the diabetic heart confirmed significant upregulation of miR-34a and downregulation of SIRT1, associated with a marked increase in pro-apoptotic caspase-3/7 activity. Although therapeutic inhibition of miR-34a activity restored SIRT1 expression in both cardiomyocytes and CPCs, p53 expression was further upregulated in cardiomyocytes but conversely downregulated in CPCs. In spite of increased p53, miR-34a inhibition significantly reduced high glucose induced apoptotic cell death in cardiomyocytes. However, this effect was not observed in CPCs, which in fact showed reduced proliferation following miR-34a inhibition. Taken together, our results demonstrate upregulation of miR-34a in the diabetic heart and in the circulation from an early stage of the disease. However, inhibition of miR-34a activity has differential effects depending on the cell type, thereby warranting the need to eliminate off-target effects when introducing miR-based therapy.


Subject(s)
Cellular Senescence , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/biosynthesis , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Stem Cells/metabolism , Aged , Aged, 80 and over , Apoptosis , Diabetes Mellitus, Type 2/pathology , Female , Humans , Male , Middle Aged , Myocardium/pathology , Myocytes, Cardiac/pathology , Sirtuin 1/biosynthesis , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...